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Simple Summary: Gliomas are the most common malignant brain tumors with high mortality
rates. Recently the role of the FREM2 gene has been shown in glioblastoma progression. Here
we reconstructed the FREM2 molecular pathway. We assessed the biomarker capacity of FREM2
expression and its pathway as the overall survival (OS) and progression-free survival (PFS) biomark-
ers. We used 566 glioblastomas (GBM) and 1097 low-grade gliomas (LGG) to test these biomarkers.
FREM2 molecular pathway was a better biomarker than FREM2 gene expression. It could robustly
discriminate between GBM and LGG. High FREM2 pathway activation level was associated with
poor overall survival (OS) in LGG, and low progression-free survival in LGG and GBM. FREM2
pathway activation level was also a poor prognosis biomarker for OS and PFS in LGG with IDH
mutation, for PFS in LGG with wild type IDH and mutant IDH with 1p/19q codeletion, in GBM with
unmethylated MGMT, and in GBM with wild type IDH.

Abstract: Gliomas are the most common malignant brain tumors with high mortality rates. Recently
we showed that the FREM2 gene has a role in glioblastoma progression. Here we reconstructed the
FREM2 molecular pathway using the human interactome model. We assessed the biomarker capacity
of FREM2 expression and its pathway as the overall survival (OS) and progression-free survival (PFS)
biomarkers. To this end, we used three literature and one experimental RNA sequencing datasets col-
lectively covering 566 glioblastomas (GBM) and 1097 low-grade gliomas (LGG). The activation level
of deduced FREM2 pathway showed strong biomarker characteristics and significantly outperformed
the FREM2 expression level itself. For all relevant datasets, it could robustly discriminate GBM and
LGG (p < 1.63 × 10−13, AUC > 0.74). High FREM2 pathway activation level was associated with
poor OS in LGG (p < 0.001), and low PFS in LGG (p < 0.001) and GBM (p < 0.05). FREM2 pathway
activation level was poor prognosis biomarker for OS (p < 0.05) and PFS (p < 0.05) in LGG with IDH
mutation, for PFS in LGG with wild type IDH (p < 0.001) and mutant IDH with 1p/19q codeletion
(p < 0.05), in GBM with unmethylated MGMT (p < 0.05), and in GBM with wild type IDH (p < 0.05).
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Thus, we conclude that the activation level of the FREM2 pathway is a potent new-generation
diagnostic and prognostic biomarker for multiple molecular subtypes of GBM and LGG.

Keywords: FREM2; glioma; glioblastoma; survival prognosis; algorithmically deduced molecular
pathway; transcriptomics

1. Introduction

Gliomas account for ~30% of all CNS tumors and 80% of all malignant brain tumors [1,2].
In the current WHO classification, there are four grades of glioma (I–IV) that reflect
pathological evaluation and molecular characteristics of a tumor [3]. The grade has typical
survival characteristics and impacts on the treatment approach. The most advanced grade
(IV) includes malignant glioblastoma multiforme (GBM) tumors. GBM is the most common
malignant brain tumor in adults with an age-adjusted annual incidence rate of 0.6–3.7
per 100,000 individuals [4,5]. The median overall survival (OS) of GBM patients is only
12 months [6], and GBM remains a treatable but incurable disease with inevitable lethal
outcomes [7]. GBM has a heterogeneous origin, aggressive nature, quick progression, and
occurs in vitally important tumor sites which complicates surgery and radiation therapy
applications [5,8].

Other types of gliomas (grade 1–3) are typically called low-grade gliomas (LGG),
while some authors refer to LGG only grade 1–2 gliomas and other authors refer to LGG
diffuse low-grade and intermediate-grade gliomas (grade 2–3) [9]. In this study, we took
grade 2–3 gliomas for the “LGG” group. Some LGG cases can rapidly transform into GBM
within months, whereas the others can remain stable for years. Correspondingly, mean OS
varies for different LGG subgroups from 1 to ~15 years, and a fraction of LGGs is highly
sensitive to the therapy [9].

Furthermore, molecular markers can serve as predictors for the survival of glioma
patients. Robust biomarkers such as IDH mutation and MGMT promoter methylation are
associated with better survival in gliomas [9–11]. A meta-analysis of 55 studies involving
9487 patients with gliomas showed that patients with the IDH mutation had better overall
survival (Hazard ratio 0.39, 95% CI: 0.34–0.45; p < 0.001) and progression-free survival
(Hazard ratio 0.42, 95% CI: 0.35–0.51; p < 0.001) [12]. Median OS for wtIDH LGGs (1.7 years)
is between OS for wtIDH GBMs (1.1 years) and mutated IDH GBMs (2.1 years) [9]. MGMT
promoter methylation was associated with longer PFS and OS in GBM patients without
therapy, and with better OS in GBM patients treated by DNA-alkylating agents such as
temozolomide [13,14]. In turn, methylated MGMT promoter is also a favorable predictor
of PFS in LGG treated with neoadjuvant temozolomide [11].

Recently, using agnostic proteomic screening we found that FREM2 (FRAS1 Re-
lated Extracellular Matrix 2) gene product was statistically significantly associated with
GBM [15,16]. FREM2 encodes an integral membrane protein with multiple chondroitin
sulfate proteoglycan element (CSPG) repeats and Calx-beta domains that mark sodium-
calcium exchanger activity, which is used to expel calcium from cells. The expression of
FREM2 is higher in GBM cell lines than in normal astrocytes [15]. Also, FREM2 gene and
protein expression levels are higher in GBM stem cells compared to conventional GBM
cell lines [15]. This trend was also confirmed on human tumor tissue samples. Increased
FREM2 expression was found in LGGs compared to healthy brain tissues, and in GBMs
compared to LGGs [16].

In this study, we analyzed FREM2 gene expression and its linkage with survival using
the major publicly available datasets of LGG and GBM RNA sequencing profiles. We
also reconstructed the FREM2 molecular pathway using the human interactome model
and found that it had a significantly better performance as the OS and PFS biomarker
of gliomas. To this end, we used three literature and one experimental RNA sequencing
datasets collectively covering 566 glioblastomas (GBM) and 1097 low-grade gliomas (LGG).
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The activation level of deduced FREM2 pathway showed strong biomarker characteristics
and significantly outperformed the FREM2 expression level itself. For all relevant datasets,
it could discriminate GBM and LGG (p < 1.63*10−13, AUC > 0.74). High FREM2 pathway
activation level was associated with poor prognosis in LGG and GBM and several LGG
or GBM subtypes. Thus, we conclude that the activation level of the FREM2 pathway
is a potent new-generation diagnostic and prognostic biomarker for multiple molecular
subtypes of GBM and LGG.

2. Materials and Methods
2.1. The Cancer Genome Atlas (TCGA) Dataset

Overall and progression-free survival data were extracted from the clinical description
on the GDC Data Portal for 591 GBM and 510 LGG samples [17]. RNA sequencing (RNAseq)
data (HTseq counts) were downloaded from the GDC Data Portal [17]. Only primary tumor
samples were selected (153 and 505 samples, respectively). MGMT methylation statuses
were obtained for GBM samples from the report [18] and LGG samples from the report [19].
IDH mutation statuses were extracted for GBM and LGG samples from SNV data (vcf
files) from the GDC Data Portal. Molecular subtype classifications were obtained from
Ceccarelli M. et al. [19] and the GlioVis portal (http://gliovis.bioinfo.cnio.es/, acceded on
7 August 2021).

2.2. The Chinese Glioma Genome Atlas Dataset CGGA_325

Overall survival data, IDH mutation status, MGMT methylation status, and patient age
information were extracted from the clinical description for 137 GBM and 172 LGG samples
from the CGGA database; dataset id: mRNAseq_325 [20,21]. RNAseq data (RSEM counts)
were downloaded from the CGGA database for the corresponding biosamples. Molecular
subtype classification was obtained from the GlioVis portal (http://gliovis.bioinfo.cnio.es/,
accessed on 7 August 2021).

2.3. The Chinese Glioma Genome Atlas Dataset CGGA_693

Overall survival data, IDH mutation status, MGMT methylation status, and patient
age information were extracted from the clinical description for 237 GBM and 420 LGG
samples included in CGGA database; dataset id: mRNAseq_693) [22,23]. RNAseq data
were downloaded from the CGGA database for the corresponding samples. Molecular
subtype classification was obtained from the GlioVis portal (http://gliovis.bioinfo.cnio.es/,
accessed on 7 August 2021).

2.4. The Experimental Dataset
2.4.1. Biosamples

Thirty-nine tumor samples were collected from 16 patients with primary GBM who
were operated on at the Johannes Gutenberg University Medical Center Mainz (UMM).
For some experimental patients (12/16), two or more tumor samples were included in the
analysis that were obtained surgically from different regions of the same tumor. Written
informed consents for using excess tumor tissue for research purposes were obtained from
all the patients. Tumor samples were coded and processed for RNAseq anonymously and in
accordance with the approval by the UMM Institutional Review Board and ethics committee
approval No. 837.178.17 (11012) granted to the UMM Clinic for Neurosurgery by the
Rhineland Palatinate Chamber of Physicians (Landesäzrtekammer Rheinland-Pfalz, https:
//www.laek-rlp.de/ausschuesse-kommissionen/ethikkommission/, accessed on 17 April
2021). Clinical data were obtained for every patient including diagnosis, IDH mutation
status, MGMT promoter methylation status, type of therapy, and time to progression
(Supplementary File 1).

http://gliovis.bioinfo.cnio.es/
http://gliovis.bioinfo.cnio.es/
http://gliovis.bioinfo.cnio.es/
https://www.laek-rlp.de/ausschuesse-kommissionen/ethikkommission/
https://www.laek-rlp.de/ausschuesse-kommissionen/ethikkommission/
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2.4.2. RNA Sequencing

Preparation of RNAseq libraries was performed as described previously [24]. Frozen
GBM samples were homogenized. RNA was extracted using the Precellys Tissue RNA
Kit Safety-Line (Peqlab) according to the manufacturer’s protocol. RNA integrity number
(RIN) was measured using Agilent 2100 Bioanalyzer with Agilent RNA 6000 pico and
nano assay. RNA concentration was measured using Qubit 2 and Qubit 4 fluorometers
(Invitrogen, Baden-Württemberg, Germany) with RNA BR and HS assay kits. Samples
with an RNA integrity number (RIN) less than seven were excluded from subsequent
library preparation. For generating libraries, we used the TruSeq Stranded Total RNA
Library Prep Kit ((Illumina, Berlin, Germany) and the NEBNext Ultra II Directional RNA
Library Prep Kit (New England BioLabs, Frankfurt am Main, Germany) according to
the manufacturer protocols. Different indexing adaptors were used for multiplexing
of samples in one sequencing run. Library concentrations were measured using Qubit
dsDNA high-sensitivity (HS) kit and QIAxcel capillary electrophoresis system with QIAxcel
ScreenGel software (Qiagen, Hilden, Germany). Paired-end RNA sequencing was carried
out at StarSEQ laboratory using Illumina NextSeq 500 engine, 150 bp read length, for
approximately 25–30 million reads per sample. A data quality check was done using
Illumina SAV and FastQC software. De-multiplexing was performed using Illumina
bcl2fastq2 software. RNAseq FASTQ files were processed with STAR aligner [25] and
annotated with HGNC identifiers. The 23582-gene expression profile was obtained for
every sample under analysis, statistics of reads mapping is given in Supplementary File 2.
Gene expression profiles (raw counts) were deposited in the Gene Expression Omnibus
database (GEO) under accession number GSE139533.

2.5. Source Molecular Pathways

The gene structures and molecular architectures of 1180 intracellular pathways were
extracted from the publicly available databases Reactome [26], NCI Pathway Interaction
Database [27], Biocarta [28], and Qiagen [29] as described in [30].

2.6. Pathway Activation Level Calculation

Pathway activation level (PAL) is an aggregated quantitative and qualitative character-
istic of changes in expression levels for genes participating in a certain molecular path-
way [30–32]. PALs were calculated as follows:

PALp = ∑
n

ARRnp ∗ lg(CNRn)/ ∑
n
|ARRnp| ∗* 100,

where PALp is PAL for pathway p, CNRn is the case-to-normal ratio, the ratio of gene n
expression level in a sample understudy to an average level in the control group; ARR
(activator/repressor role) is a Boolean value that depends on the function of this gene product
in pathway p. ARR values were defined as follows: −1 when the product of n inhibits
p; 1 when n activates p; 0 when n has an ambiguous or unclear role in the pathway; 0.5
or −0.5, when n is rather p activator or inhibitor, respectively. We used an averaged-by-
gene-expression tumor sample as the control. PAL values calculated for all the samples
investigated are available in Supplementary File 3.

2.7. Statistical Analysis

We used principal component analysis to assess the compatibility of glioma gene
expression data from a different dataset. Also, quality measuring of hierarchical clustering
was applied to CGGA datasets for the same goal. This was performed by the Watermelon
multisection method [33] that returns WM metric which positively reflects the quality of
clustering of samples into pre-defined groups.

ROC AUC value and t-test were used as the measure of biomarker quality in compari-
son of low-grade glioma with glioblastomas.
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Overall and progression-free survival was assessed by Kaplan-Meyer analysis. The
statistical significance of survival differences was measured with a log-rank test p-value.
Hazard ratios were calculated in the univariate and multivariate Cox model to assess
survival differences in comparative groups.

3. Results
3.1. Glioma Expression Datasets

We used three major publicly available glioma datasets with clinically annotated RNA
sequencing profiles (from TCGA and CGGA databases [17,20–23]), and one experimental
dataset [24]. These datasets were classified into subsets including glioblastoma (GBM), or
low-grade glioma (LGG) samples. Only samples with survival data were included in the
analysis, thus totaling 566 GBM and 1097 LGG RNAseq profiles.

Specifically, the TCGA dataset included 153 GBM (mean age 60 y.o., 99 male and
54 female patients), and 505 LGG samples (mean age 43 y.o., 279 male and 226 female
patients), and overall survival (OS), progression-free survival (PFS) [17], MGMT promoter
methylation (only for GBM samples) [18], and IDH mutation statuses were extracted [17].

CGGA database contained two large RNAseq glioma datasets with internal IDs
mRNAseq_325 and mRNAseq_693 [20–23], which were referred to here as CGGA_325 and
CGGA_693, respectively. OS, IDH mutation, and MGMT methylation status information
were available for both datasets. CGGA_693 contained RNAseq profiles for 237 GBMs
(mean age 49 y.o., 139 male and 98 female patients) and for 420 LGGs (mean age 40 y.o.,
235 male and 185 female patients).

CGGA_325 included profiles for 137 GBMs (mean age 47 y.o., 87 male and 50 female
patients) and 172 LGGs (mean age 40 y.o., 106 male and 66 female patients).

The experimental dataset included 39 tumor samples, which were collected from
16 patients with primary GBM (mean patient age at the date of diagnosis 60 y.o, 9 male
and 7 female patients). Some patients (12/16) have several tumor samples which were
obtained from different regions of the same tumor. RNAseq profiles were deposited in
Gene Expression Omnibus (GEO) database under accession number GSE139533. PFS, IDH
mutation, and MGMT promoter methylation information was collected for each patient,
but no OS information was available.

3.2. Compatibility of Glioma Gene Expression Data

The expression data from the datasets under investigation were all processed using the
Illumina platform but were obtained with different library preparation kits and protocols.
Thus, all datasets had a different number of sequenced genes (36304, 24326, 23987, 23582 for
TCGA, CGGA_325, CGGA_693, and experimental datasets, respectively). We normalized
raw counts by DESeq2 software [34] and inspected the data using principal component
analysis (PCA) that showed significantly different patterns for all literature datasets when
separately comparing LGG and GBM samples, respectively (Figure 1).

In addition, hierarchical clustering of samples from two batches of the CGGA project
(CGGA_325 and CGGA_693) showed that samples were clustering by batch ID rather by
glioma type (LGG or GBM). This was also quantitatively measured by the Watermelon
multisection method [33] that returns WM metric which positively reflects the quality of
clustering of samples into pre-defined groups, with WM metrics 0.839 and 0.159 for batch-
and glioma type clustering, respectively (data not shown).

Thus, we didn’t combine CGGA_325 and CGGA_693 expression data and used them
as the two independent literature datasets.



Cancers 2021, 13, 4117 6 of 21
Cancers 2021, 13, x FOR PEER REVIEW 6 of 23 
 

 

 
Figure 1. Principle component analysis (PCA) plot built for primary gene expression data of three literature datasets for 
LGG, tree literature datasets for GBM, and one experimental dataset for GBM samples. PCA plot was built using prcomp 
function from stats R package [35]. 

In addition, hierarchical clustering of samples from two batches of the CGGA project 
(CGGA_325 and CGGA_693) showed that samples were clustering by batch ID rather by 
glioma type (LGG or GBM). This was also quantitatively measured by the Watermelon 
multisection method [33] that returns WM metric which positively reflects the quality of 
clustering of samples into pre-defined groups, with WM metrics 0.839 and 0.159 for batch- 
and glioma type clustering, respectively (data not shown). 

Thus, we didn’t combine CGGA_325 and CGGA_693 expression data and used them 
as the two independent literature datasets. 
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LGG, tree literature datasets for GBM, and one experimental dataset for GBM samples. PCA plot was built using prcomp
function from stats R package [35].

3.3. Human Interactome Model

Using a collection of published molecular pathways as the knowledge base of molec-
ular interactions, we built a human interactome model—the graph, where the nodes are
genes/gene products, and the edges are known pairwise connections between the elements
of molecular pathways. Visualization of the model was performed using Gephi software,
ForceAtlas2 algorithm [36] (Figure 2).
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Figure 2. Human interactome model. Genes (gene products) are nodes and protein-protein interactions are edges of the
graph. Black dots represent gene products involved in the FREM2 pathway corresponding to PAL2, and the red dot denotes
the FREM2 gene product.

Molecular architectures of 1180 different pathways were used. Gene composition
and nodes interactions of the pathways were extracted and cataloged. We combined all
pathway graphs based on the coinciding genes/gene products. The obtained interactome
graph consists of 7152 nodes (genes/gene products) with 298,824 molecular interactions.
The following types of interactions were considered: “activation”, “compound”, “inhi-
bition”, “phosphorylation”, “dissociation”, “repression”, “dephosphorylation”, “bind-
ing/association”, “ubiquitination”. The graph has a low density (0.01) with an average
vertex degree of 42. All genes included form a connected network, i.e., there is an at least
undirected path between every pair of genes/gene products involved.

3.4. Reconstruction of FREM2 Molecular Pathway

We used the interactome model built to algorithmically identify interactions with FREM2
protein. FREM2 is included in the “extracellular matrix” node from five pathways consid-
ered: “Akt_Signaling_Pathway”, “ERK_Signaling_Pathway”, “ILK_Signaling_Pathway”,
“MAPK_Signaling_Pathway”, and “PTEN_Pathway”. There were several downstream
interactions with FREM2, but no upstream interactions were cataloged (Figure 3).
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Figure 3. Algorithmically reconstructed variants of the FREM2 pathway. (a) Variant 1 was created as a graph of first-order
interactions with the FREM2 gene product. (b) Variant 2 was created as a graph of first and second-order interactions with
FREM2. (c) Variant 3 was created as a graph of first, second, and third-order interactions with FREM2.

We reconstructed three variants of the FREM2 pathway including sequentially in-
teracting nodes for up to the third level of interactions starting from FREM2. As such,
the first variant aggregated first-order interactions and included 4 nodes, 10 edges, and
53 gene products (Figure 3a). The second variant accumulated first-order and second-order
interactions and contained 12 nodes, 26 edges, and 69 genes (Figures 2 and 3b). Finally, the
third variant combined first, second, and third-order interactions, with a total of 66 nodes,
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147 edges, and 208 genes (Figure 3c). Activator/repressor roles were algorithmically calcu-
lated for every gene product in every pathway according to [30].

Pathway activation levels (PAL) were calculated for all three pathway types, for all
tumor samples in every dataset, and were defined PAL1, PAL2, and PAL3, correspondingly.
PAL positively reflects activation of a molecular pathway, where the absolute value of
PAL reflects the extent of a pathway up/down regulation, and sign (+/-) of a PAL shown
overall upregulation or inhibition of a pathway, respectively [37].

We then measured if these metrics (PAL1-3 and FREM2 expression level) were con-
nected with specific glioma conditions. To this end, we used the ROC AUC value as the
measure of biomarker quality. The area under the ROC curve (AUC) is frequently used
for scoring molecular biomarkers in oncology [38–41]. It reflects biomarker robustness
and depends on its sensitivity and specificity [42]. It varies between 0.5 and 1, AUC less
0.7 reflects no biomarker ability to discriminate patients by condition, and 0.7 to 0.8 thresh-
old is considered acceptable in diagnostic test assessment, 0.8 to 0.9 is considered excellent,
and more than 0.9 is considered outstanding [43–45]. Thus, scoring t-test, p-value, and
ROC AUC can answer two different questions: whether a metric under consideration is
differentially regulated, and whether it can serve as a good biomarker.

3.5. FREM2 Gene and Pathways as LGG/GBM Grade Biomarkers

We investigated how the expression level of the FREM2 gene or activation of FREM2
pathways was connected with the LGG or GBM status of a tumor in the available datasets.
For PAL values of all three variants of the FREM2 pathway (t-test p < 1.08 × 10−10), and
for FREM2 expression levels (p < 4.46 × 10−4), we detected significant differences between
LGG and GBM for all the relevant datasets tested (Table 1, Supplementary Figure S1).

Table 1. Performance of FREM2 expression and FREM2 pathway activation for discrimination of LGG and GBM tumor
samples.

t-Test p-Value

PAL3 PAL2 PAL1 FREM2 IDH Mutation MGMT
Methylation

TCGA 4.35 × 10−30 1.92 × 10−47 4.23 × 10−49 4.68 × 10−7 7.75 × 10−91 2.51 × 10−14

CGGA_325 1.08 × 10−10 1.63 × 10−13 7.74 × 10−13 4.46 × 10−4 3.66 × 10−16 3.81 × 10−1

CGGA_693 4.99 × 10−25 1.49 × 10−28 1.77 × 10−27 4.57 × 10−5 1.86 × 10−49 8.36 × 10−2

AUC

PAL3 PAL2 PAL1 FREM2 IDH Mutation MGMT
Methylation

TCGA 0.80 0.86 0.87 0.76 0.83 0.7
CGGA_325 0.72 0.74 0.73 0.66 0.72 0.53
CGGA_693 0.74 0.75 0.75 0.66 0.78 0.54

However, in most datasets, FREM2 expression returned AUC less than 0.7, and thus
couldn’t be identified as the high-quality biomarker (Table 1). In contrast, all the FREM
pathway variants demonstrated high AUC values (0.72–0.87) for discriminating LGG and
GBM samples (Table 1). Interestingly, these FREM2 pathway results were comparable with
the performance of IDH mutation status as the biomarker, and significantly outperformed
MGMT promoter methylation status as the biomarker (Table 1).

Thus, we conclude that all three variants of FREM2 pathway activation are robust
biomarkers for LGG and GBM discrimination, that have comparable performance with IDH
mutation status, and significantly outperform MGMT methylation and FREM2 expression
as the biomarkers.
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3.6. Performance of FREM2 Expression and Pathway Activation as OS and PFS Biomarker

We then investigated the performance of FREM2 expression and pathway activation
levels as the survival (OS and PFS) biomarker. To this end, we performed Kaplan-Meier
analysis and calculated p-values of the log-rank test separately for GBMs and LGGs for all
relevant datasets (Figure 4, Supplementary File 4).
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Where possible, we also analyzed tumor molecular subgroups classified according
to either IDH mutation or MGMT methylation status, the minimal size of a subgroup
was ten samples. Smaller subsets were not considered for statistical significance reasons.
The groups for Kaplan-Meier analysis were formed relatively median of FREM2 variable
(FREM2 expression or FREM2 pathway activation levels). Thus, we obtained groups with
high-level samples (FREM2 variable was higher than its median) and low-level samples
(FREM2 variable was lower or equal to its median) in each dataset or subgroup.

Thus, we performed a total of 48 comparisons for each possible biomarker under
investigation (FREM2 expression, PAL1-3) on different sets of glioma samples (Figure 4).
In all the cases where statistically significant associations were found, the high FREM2
pathway activation levels, or FREM2 gene expression were linked with poor survival
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prognosis. We performed an FDR correction of p-values from a log-rank test because four
potential biomarkers were tested to select the best of them. We found more statistically
significant associations with the FREM2 expression/pathway activation in the LGG datasets
compared to the GBMs (Figure 4). Overall, FREM2 expression was significantly associated
(q-value < 0.05) with the survival characteristic in 33% of the comparisons with average
log (q-value) −1.18. In turn, PAL1-3 were effective in 39.6%, 39.6%, and 37.5% of the cases,
with average lg(q-value) −1.43, −1.51, and −1.47, respectively.

Thus, we concluded that the PAL2 was the best functional metric interrogated that
resulted in the biggest number of statistically significant outputs (19 out of 48; 39.6%) and
at the same time had the lowest average q-value for the statistical tests (Figure 4). For
further investigations, we used PAL2 as it showed the best performance in previous tests.

We then compared the performance of FREM2 pathway PAL2 with other well-known
survival predictors: MGMT methylation and IDH mutation status (Figure 5).
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Figure 5. Performance of FREM2 pathway PAL2 survival biomarker in glioma datasets in comparison with IDH mutation,
MGMT methylation, and 1p/19q statuses. 1p/19q statuses were assessed only for IDH mutant tumors. p-values of log-rank
test of using FREM PAL2, IDH mutation, and MGMT methylation statuses were investigated as survival predictors in
9 comparisons. * stands for p < 0.05, ** for p < 0.01, *** for p < 0.001. Color markers indicate the dataset under analysis. IDH
mutation status was used for the full cohort, including samples with non-codeletion and 1p/19q-codeletion statuses.

To this end, these three predictors were tested in nine comparisons: in the literature
glioma expression datasets (GBM and LGG from TCGA, CGGA_325, and CGGA_693
datasets—for OS and PFS), and one experimental GBM dataset for PFS. We used p-value
without FDR correction here, because there is a descriptive comparison that presents the
application area of three robust biomarkers on primary data.
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In LGG samples, FREM2 PAL2 and IDH mutation showed very good comparable
performance for both OS and PFS analysis (Figure 5). In contrast, MGMT methylation
status was a poor predictor in all LGG comparisons.

In GBM, neither of the biomarkers tested was effective in all three literature datasets for
predicting the OS (Figure 5). However, for the PFS we were able to measure performance
in only one literature dataset for MGMT and IDH, and in two datasets: experimental
and literature—for PAL2. We found that MGMT methylation status was a poor predictor,
but both IDH and FREM2 PAL2 was effective as the GBM PFS biomarkers, and this was
confirmed for FREM2 PAL2 in an independent experimental validation study (Figure 5).

We then investigated if PAL2 is informative as an independent biomarker or if it
simply reflects the IDH mutation status. To this end, we correlated FREM2 PAL2 with
IDH mutation status in all available datasets. We detected statistically significant negative
correlations for both LGG (−0.28; −0.36) and GBM (−0.09; −0.52), with a mean correlation
of −0.31 (Supplementary File 5). We, therefore, conclude that although the correlations
were statistically significant and supported common trends traced by the PAL2 and IDH
biomarkers, still their extent was relatively low. Thus, our findings support PAL2 as the
independent biomarker.

We also detected good effectiveness of PAL2 (p < 0.05) for PFS prognosis inside four
LGG subgroups: with wtIDH, mutant IDH, mutant IDH with 1p/19q codeletion (p < 0.05)
and methylated MGMT, and in GBM subgroups with wtIDH and with unmethylated
MGMT promoter. This further confirms the independent utility of the PAL2 biomarker in
gliomas.

In total, we identified five glioma conditions where FREM2 pathway PAL2 effective-
ness was confirmed in two or more available datasets as OS or PFS predictor (Table 2):
(i) for OS in LGG, (ii) for OS in LGG with methylated MGMT, (iii) for OS in LGG with
unmethylated MGMT, (iv) for OS in LGG with IDH mutation; (v) for PFS in GBM. We used
p-value without FDR correction in Table 2 because there is a descriptive presentation of
how one biomarker works on primary data, these cases are complementary and define the
application area of the new biomarker.

Table 2. Effectiveness of FREM2 pathway PAL2 as survival prognosis factor. “+” means statistically significant difference in
comparison by the p-value of the log-rank test, “−” means non-significant comparisons. Positive results that coincide with
the available datasets are shaded.

Cancer Type and Functional Characteristic
Assessed

Interrogated Dataset

TCGA
(n = 153 GBM,

505 LGG)

CGGA_325
(n = 137 GBM,

172 LGG)

CGGA_693
(n = 237 GBM,

420 LGG)
Experimental
(n = 39 GBM)

OS, GBM − + − N/A
OS, GBM, MGMT methylated − − − N/A

OS, GBM, MGMT_unmethylated − − − N/A
OS, GBM, IDH mutated N/A − + N/A

OS, LGG, IDH mutated without 1p/19q codeletion N/A − − N/A
OS, GBM, IDH wild-type − + − N/A

OS, LGG + + + N/A
OS, LGG, MGMT methylated + + + N/A

OS, LGG, MGMT_unmethylated − + + N/A
OS, LGG, IDH mutated + + + N/A
OS, LGG, IDH wild-type + − − N/A

OS, LGG, IDH mutated+1p/19q codeletion − − − N/A
OS, LGG, IDH mutated without 1p/19q codeletion − − − N/A

PFS, GBM + N/A N/A +
PFS, GBM, MGMT methylated − N/A N/A N/A

PFS, GBM, MGMT_unmethylated + N/A N/A N/A
PFS, GBM, IDH mutated N/A N/A N/A N/A

PFS, GBM, IDH wild-type + N/A N/A N/A
PFS, LGG, IDH mutated+1p/19q codeletion + N/A N/A N/A

PFS, LGG, IDH mutated without 1p/19q codeletion − N/A N/A N/A
PFS, LGG + N/A N/A N/A

PFS, LGG, MGMT methylated + N/A N/A N/A
PFS, LGG, MGMT unmethylated − N/A N/A N/A

PFS, LGG, IDH mutated + N/A N/A N/A
PFS, LGG, IDH wild-type + N/A N/A N/A
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For these glioma subtypes, we calculated hazard ratio values from univariate Cox
models and built Kaplan-Meyer plots (Supplementary Figure S2). For OS in LGG, the
effectiveness of PAL2 was confirmed in the multivariate Cox model for all three available
datasets. The model included PAL2, age, IDH mutation status, and MGMT methylation
status (Figure 6).
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The link between PAL2 and PFS in GBM was validated on the experimental dataset.
The experimental dataset included 39 GBM samples from 16 patients, where for 12/16 of
the patients’ several tumor samples were profiled by RNAseq. Duplicated tumor samples
were obtained from different regions from the same tumor. For each patient, PFS and IDH
mutation status were measured, but only for 11 patients, MGMT methylation status was
known (Supplementary File 1). We, therefore, tested the performance of FREM2 pathway
PAL2 in two variants: (i) using the expression profile of each sample separately, and (ii)
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using averaged expression profile for every patient. In both types of the analysis, high
PAL2 values were associated with the poor prognosis on PFS in GBM patients (p < 0.05;
Figure 7).
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Meyer and univariate Cox analyses of progression-free survival in GBM for experimental dataset (for all samples and for
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PAL2: PAL2 > median (PAL2); “low” PAL2: PAL2 < median (PAL2)). Time is given in days for the TCGA dataset, and in
months for the experimental dataset. * stands for p < 0.05.

We then analyzed expression profiles of the reconstructed FREM2 pathway com-
ponents to assess their impacts on the pathway activation levels. The FREM2 pathway
activation profiles were built using the Oncobox platform [41] for each available dataset.
For visualization, gene expression levels in an averaged sample with low PAL2 (good prog-
nosis) were normalized on expression levels in the averaged sample with high PAL2 (poor
prognosis), Figure 8. Overall, we observed very similar activation profiles for different
datasets interrogated, with little variation for LGG and GBM samples.
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3.7. FREM2 Gene and Pathway as Molecular Subtype Biomarkers

We then investigated how the expression level of the FREM2 gene or activation of the
FREM2 pathway were connected with molecular subtypes of GBM (mesenchymal, classical,
proneural). For FREM2 pathway PAL2 values (t-test p < 1.23 × 10−5, AUC > 0.71) we
detected a significant difference between mesenchymal and other subtypes for all relevant
datasets tested (Table 3, Supplementary Figure S3). However, FREM2 pathway activation
level was not associated with overall or progression-free survival within each molecular
subtype in all three literature datasets investigated.

There was also a tendency of differential FREM2 gene expression in classical subtype
vs others (t-test p < 0.05), but AUC was less than 0.7 for most of the comparisons. Thus,
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FREM2 gene expression cannot serve robust biomarker for GBM molecular subtypes
(Table 3, Supplementary Figure S3).

Table 3. Performance of FREM2 expression and FREM2 pathway activation for discrimination of GBM molecular subtypes.

t-Test p-Value

PAL2 FREM2 Expression

Mesenchymal
vs. Proneural

Proneural vs.
Classical

Mesenchymal
vs. Classical

Mesenchymal
vs. Proneural

Proneural vs.
Classical

Mesenchymal
vs. Classical

TCGA 3.59 × 10−13 6.11 × 10−2 4.28 × 10−10 2.39 × 10−1 7.69 × 10−3 1.60 × 10−4

CGGA_325 1.67 × 10−4 9.48 × 10−1 4.18 × 10−10 6.45 × 10−1 2.25 × 10−2 2.61 × 10−1

CGGA_693 1.23 × 10−5 8.40 × 10−1 1.23 × 10−5 8.45 × 10−1 2.17 × 10−2 8.47 × 10−2

AUC

PAL2 FREM2 Expression

Mesenchymal
vs. Proneural

Proneural vs.
Classical

Mesenchymal
vs. Classical

Mesenchymal
vs. Proneural

Proneural vs.
Classical

Mesenchymal
vs. Classical

TCGA 0.90 0.61 0.85 0.56 0.66 0.73
CGGA_325 0.86 0.52 0.87 0.58 0.67 0.75
CGGA_693 0.71 0.50 0.72 0.56 0.73 0.69

Likewise, we explored how FREM2 gene expression and pathway activation can dis-
criminate glioma molecular subtypes LGm1-6 which are described in Ceccarelli M. et al. [19]
and strongly associated with the DNA methylation-based classification of gliomas [46].
Only the TCGA dataset was used for these analyses because other datasets contained no
relevant tumor methylation data. We found that FREM2 gene expression and PAL2 were
differential in these subtypes (Kruskal-Wallis test p < 1.3 × 10−39 and p < 2.1 × 10−59,
respectively (Figure 9)). Higher PAL2 was associated with lower OS in LGm6 (p = 0.032),
and lower PFS in LGm3 and LGm4 (p < 0.01).
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4. Discussion

We report here a new reconstructed FREM2 molecular pathway, which activation
is strongly associated with unfavorable prognosis in glioma patients. We have tested
three algorithmically built agnostic variants of this pathway and selected the best version
in 34 independent comparisons. This survival predictor capacity of FREM2 pathway
activation was robust and comparable with IDH mutation status, but significantly superior
to MGMT methylation status. Moreover, FREM2 pathway activation level (PAL) could
effectively predict survival within the subgroups with different IDH mutation statuses:
OS in IDH mutant LGG, and PFS in IDH mutant GBM, in LGG with wtIDH, and LGG
with mutant IDH. Furthermore, activation levels of the FREM2 pathway were significantly
higher in GBM than in LGG samples.

Expression of SPRY1 gene, another potential glioma biomarker that showed compara-
ble characteristics to FREM2 in the previous study [15], was also associated with survival
and showed a similar pattern to FREM2 expression (Supplementary File 6). However, the
SPRY1 pathway hasn’t been reconstructed and investigated yet, and we plan that this will
be a matter of our further studies.

As reported previously, FREM2 is associated with mesenchymal differentiation in
gliosarcoma because it was strongly overexpressed in mesenchymal compared to glial
tumor areas. [47]. In addition, increased FREM2 gene expression was demonstrated in
gliomas compared to the normal glia, and in GBM compared in LGG [15,16,48]. We found
no other reports on FREM2 implication in cancers.

However, other genes of the same gene family as FREM2, namely FRAS1 and FREM1,
were recently reported as cancer-related genes. In particular, knockout of FRAS1 inhibits
proliferation of gastric cancer cells through caspase activity increment and cell cycle arrest
both in vitro and in vivo [49]. Conversely, increased expression of FREM1 in breast cancer
is associated with a favorable prognosis and high-level immune infiltration status [50].

Among the reconstructed FREM2 pathway members we detected strongly upregulated
expression of integrin family members, filamin, and several types of membrane receptors
associated with the poor survival prognosis. Thus, we propose that these components of
the FREM2 pathway are important actors of glioma pathogenesis and could be regarded as
the possible new targets for next-generation molecular therapeutics.

Indeed, integrins were previously mentioned as the potential targets of GBM therapy
because of their major role in tumor invasion and strongly differential expression [51–53].
Unfortunately, small molecule integrin antagonists did not meet high expectations in GBM
therapy [51]. Instead, further investigation of the FREM2 pathway can help to find and
validate additional molecular targets that could be affected in a combinational therapy of
malignant gliomas.

Next-generation sequencing technologies allowed us to get a better insight into the
molecular biology of GBM, but also to identify new disease-specific changes and molecules.
However, despite extensive research, the life expectancy of GBM patients has not signifi-
cantly improved in decades. Primary GBMs are ranked first among cancer types in years
of life lost—on average 20.1 years compared to 11.8 years for lung cancer and 6.8 years
for prostate cancer [54]. Currently, there are only two predictive biomarkers, in particular,
MGMT promoter methylation and 1p/19q codeletion. In older patients presenting with
wtIDH glioblastoma, the presence of MGMT promoter methylation predicts a positive
response to therapy and longer survival [55–57]. Chromosome 1p/19q codeletion is sug-
gested as a beneficial biomarker in elderly patients when they receive combined radiation
and chemotherapy with procarbazine CCNU vincristine (PCV). The improvement in over-
all survival was also proved with two phase III clinical trials that showed a 2-fold increase
in median survival in patients with 1p/19q codeletion [58,59]. Prediction of survival
and progression of glioblastoma patients can be done by investigating changes in struc-
tural magnetic resonance imaging (MRI) [60] and implementing various machine learning
models [61]. However, even with the growing number of prognostic models, the clinical
implementation of models for predicting the prognosis of glioblastoma patients remains
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difficult [62]. Thus, the need for the identification of reliable biomarkers for diagnostic,
prognostic, and therapeutic purposes remains unchanged [63].

5. Conclusions

Because of its robustness and survival predictor capacity, the FREM2 pathway can
be used for adjustment of treatment schedule that will result in a better quality of life of
patients and optimization of costs. Owing to the large sample size used in this study, we
believe that the FREM2 pathway shows the potential to be easily implemented in routine
practice after validation in clinical settings.

This biomarker holds the potential to be used as a predictive biomarker of high poten-
tial benefit for the patients. On that account, because it was found robust, comparable to
IDH mutation status, and superior to MGMT methylation status in most of the compar-
isons, we propose FREM2 pathway activation as a novel robust predictor of unfavorable
prognosis of glioblastoma patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13164117/s1, Figure S1. Boxplots for each type of FREM2 expression metric (gene
expression, PAL1, PAL2, PAL3) in comparison between LGG and GBM tumor samples. Every panel
contains a t-test p-value for the corresponding dataset. Figure S2. Kaplan-Meyer test for selected
subgroups of gliomas: GBM or LGG with IDH mutation, with methylated MGMT, with unmethylated
MGMT. The samples were grouped by PAL2 level relatively to PAL2 median (“high” PAL2: PAL2
> median (PAL2); “low” PAL2: PAL2 < median (PAL2)). Only comparisons with p-value < 0.05
in two or three parallel datasets were plotted. A full list of comparisons performed is given in
Table 2. Figure S3. Boxplots for FREM2 gene expression and pathway activation level (PAL2) in
comparison between glioblastoma molecular subtypes: classical, mesenchymal, proneural in TCGA,
CGGA_325, CGGA_693 datasets. Supplementary File 1. Clinical information for experimental GBM
dataset: patient ID, diagnosis, IDH mutation status, MGMT promoter methylation status, type of
therapy, time to progression (months). Supplementary File 2. Statistics of RNAseq reads mapping
for the experimental dataset. Supplementary File 3. FREM2 pathway PAL2 values for the samples
from the literature and experimental glioma expression datasets. Supplementary File 4 Histological
composition of LGG subgroups from 48 comparisons in Figures 4 and 5, and Table 2. Supplementary
File 5. Correlation statistics for PAL2 with IDH mutation, IDH mutation+ 1p/19q co-deletion or with
MGMT promoter methylation statuses. Supplementary File 6. Performance of FREM2 and SPRY1
expression as survival biomarkers in glioma datasets. Each survival predictor was assessed relatively
by its median (high level—the predictor was higher than its median and low level—the predictor
was lower or equal to its median).

Author Contributions: Conceptualization, I.J., M.S., A.B., M.Z., B.S.; methodology, B.S., E.K., D.K.,
S.-E.B.; software, V.T.; validation, M.Z., V.T., V.E., M.S., I.J., A.Z., N.Š.; formal analysis, M.Z., S.R.K.,
A.M., A.G. (Andrew Garazha), I.J., A.Z., N.Š., M.S.; investigation, M.Z., B.S., E.K., D.K., I.J., A.Z., N.Š.,
M.S., V.E.; data curation, B.S., S.R.K., A.M., M.Z., I.J., A.Z., N.Š., A.G. (Andrew Garazha), M.S., V.E.;
writing—original draft preparation, M.Z., V.T., E.K., D.K., S.R.K., I.J., S.-E.B., A.Z., N.Š., B.S., A.M.,
V.E.; writing—review and editing, A.G. (Alf Giese), A.B., M.S., A.G. (Andrew Garazha); visualization,
M.Z., V.T., I.J., A.Z., N.Š., M.S.; supervision, A.G. (Alf Giese), A.B.; project administration, A.B., A.G.
(Andrew Garazha); funding acquisition, A.B., I.J., E.K. All authors have agreed to be accountable
for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part
of the work are appropriately investigated and resolved. All authors have read and agreed to the
published version of the manuscript.

Funding: Biospecimen collection and RNA sequencing were financially supported by the ERA-NET
EuroTransBio program by the Federal Ministry of Education and Research (BMBF/Julich Germany,
OMICSGLIOMA project), ERA-NET RUS Plus Program (GOTICS Project). RNA sequencing and
primary data processing were supported by Z3-1869 postdoctoral project from the Slovenian Research
Agency. Financial support of data curation and formal data analysis was provided by Russian
Foundation for Basic Research grant 20-515-76007.

Institutional Review Board Statement: The study was approved by the University Medical Cen-
ter Mainz (UMM) Institutional Review Board. Ethics committee approval No. 837.178.17(11012)

https://www.mdpi.com/article/10.3390/cancers13164117/s1
https://www.mdpi.com/article/10.3390/cancers13164117/s1


Cancers 2021, 13, 4117 19 of 21

granted to the UMM Clinic for Neurosurgery by the Rhineland Palatinate Chamber of Physi-
cians (Landesäzrtekammer Rheinland-Pfalz, https://www.laek-rlp.de/ausschuesse-kommissionen/
ethikkommission/, accessed on 17 April 2021).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The expression data of 39 biopsy specimens were deposited in the
NCBI Sequencing Read Archive (SRA) repository with ID SRP227324.

Acknowledgments: We thank the OmicsWay research initiative for clinical and technical support,
and the OmicsWay Corp. research program in machine learning and digital oncology for software
and pathway databases. Cloud-based computational facilities for this study were supported by
Amazon and Microsoft Azure grants.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Ostrom, Q.T.; Cote, D.J.; Ascha, M.; Kruchko, C.; Barnholtz-Sloan, J.S. Adult Glioma Incidence and Survival by Race or Ethnicity

in the United States from 2000 to 2014. JAMA Oncol. 2018, 4, 1254–1262. [CrossRef] [PubMed]
2. Goodenberger, M.L.; Jenkins, R.B. Genetics of adult glioma. Cancer Genet. 2012, 205, 613–621. [CrossRef]
3. Rajaratnam, V.; Islam, M.M.; Yang, M.; Slaby, R.; Ramirez, H.M.; Mirza, S.P. Glioblastoma: Pathogenesis and current status of

chemotherapy and other novel treatments. Cancers 2020, 12, 937. [CrossRef] [PubMed]
4. Ostrom, Q.T.; Gittleman, H.; Stetson, L.; Virk, S.; Barnholtz-Sloan, J.S. Epidemiology of Intracranial Gliomas. In Progress in

Neurological Surgery; Karger: Basel, Switzerland, 2018; Volume 30, pp. 1–11.
5. Anjum, K.; Shagufta, B.I.; Abbas, S.Q.; Patel, S.; Khan, I.; Shah, S.A.A.; Akhter, N.; Hassan, S.S. Current status and future

therapeutic perspectives of glioblastoma multiforme (GBM) therapy: A review. Biomed. Pharmacother. 2017, 92, 681–689.
[CrossRef]

6. Witthayanuwat, S.; Pesee, M.; Supaadirek, C.; Supakalin, N.; Thamronganantasakul, K.; Krusun, S. Survival Analysis of
Glioblastoma Multiforme. Asian Pac. J. Cancer Prev. 2018, 19, 2613–2617. [CrossRef]

7. Hanif, F.; Muzaffar, K.; Perveen, K.; Malhi, S.M.; Simjee, S.U. Glioblastoma multiforme: A review of its epidemiology and
pathogenesis through clinical presentation and treatment. Asian Pac. J. Cancer Prev. 2017, 18, 3–9.

8. Dagogo-Jack, I.; Shaw, A.T. Tumour Heterogeneity and Resistance to Cancer Therapies; Nature Publishing Group: London, UK, 2018;
Volume 15, pp. 81–94.

9. Brat, D.; Verhaak, R.; Aldape, K.; Yung, A.; Salama, S.; Cooper, L.; Rheinbay, E.; Miller, R.; Vitucci, M.; Morozova, O.; et al.
Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N. Engl. J. Med. 2015, 372, 2481–2498. [PubMed]

10. Songtao, Q.; Lei, Y.; Si, G.; Yanqing, D.; Huixia, H.; Xuelin, Z.; Lanxiao, W.; Fei, Y. IDH mutations predict longer survival and
response to temozolomide in secondary glioblastoma. Cancer Sci. 2011, 103, 269–273. [CrossRef]

11. Everhard, S.; Kaloshi, G.; Crinièr, E.C.; Benouaich-Amiel, A.; Lejeune, J.; Marie, Y.; Sanson, M.; Kujas, M.; Mokhtari, K.; Hoang-
Xuan, K.; et al. MGMT methylation: A marker of response to temozolomide in low-grade gliomas. Ann. Neurol. 2006, 60, 740–743.
[CrossRef]

12. Xia, L.; Wu, B.; Fu, Z.; Feng, F.; Qiao, E.; Li, Q.; Sun, C.; Ge, M. Prognostic role of IDH mutations in gliomas: A meta-analysis of 55
observational studies. Oncotarget 2015, 6, 17354–17365. [CrossRef]

13. Zhang, K.; Wang, X.Q.; Zhou, B.; Zhang, L. The prognostic value of MGMT promoter methylation in Glio-blastoma multiforme:
A meta-analysis. Fam. Cancer 2013, 12, 449–458. [CrossRef] [PubMed]

14. Iaccarino, C.; Orlandi, E.; Ruggeri, F.; Nicoli, D.; Torricelli, F.; Maggi, M.; Cerasti, D.; Pisanello, A.; Pedrazzi, G.; Froio, E.; et al.
Prognostic value of MGMT promoter status in non-resectable glioblastoma after adjuvant therapy. Clin. Neurol. Neurosurg. 2015,
132, 1–8. [CrossRef]

15. Vidak, M.; Jovcevska, I.; Samec, N.; Zottel, A.; Liovic, M.; Rozman, D.; Dzeroski, S.; Juvan, P.; Komel, R. Me-ta-analysis and
experimental validation identified FREM2 and SPRY1 as new glioblastoma marker candi-dates. Int. J. Mol. Sci. 2018, 19, 1369.
[CrossRef]
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